当前位置:首页 >> 研究队伍
   

研究员

  • 姓名: 卢善龙
  • 性别: 男
  • 职称: 研究员
  • 职务: 
  • 学历: 研究生
  • 电话: 010-64847601
  • 传真: 
  • 电子邮件: lusl@aircas.ac.cn
  • 通讯地址: 北京市海淀区邓庄南路9号
    简  历:
  • 2023.03-至今      中国科学院空天信息创新研究院    研究员

    2020.03-2023.03   中国科学院空天信息创新研究院   副研究员

    2019.08-2020.06   美国波士顿大学                  访问学者

    2012.03-2019.08   中国科学院遥感与数字地球研究所  副研究员

    2012.02-2012.07   澳大利亚墨尔本大学              访问学者

    2011.05-2012.01   中国科学院遥感应用研究所        助理研究员

    2008.07-2010.04   中国科学院遥感应用研究所        博士后、助理研究员

    社会任职:
    研究方向:
  •     卢善龙,中国科学院空天信息创新研究院,研究员,硕导。研究方向为地表水资源遥感,重点开展基于卫星遥感的时空连续地表水动态变化监测、地表水动态变化与区域气候相互作用、湖库水储量和河川径流量估算、河流湖泊地貌变迁、以及联合国可持续发展目标6(清洁饮水与卫生设施)等方面研究。先后主持承担科技部国家重点研发项目和课题、国家自然科学基金委员会重点基金和面上基金、水利部行业公益专项课题、中国科学院战略先导专项子课题、内蒙古和云南省地方委托课题等国家、部委和地方科技项目近30余项,主持研发了用于水资源水环境和水生态监测的水域无人探测系统平台、地表水面动态变化监测、湖库水储量和河川径流量遥感估算等创新技术方法,在国内外学术期刊发表学术论文70余篇,参与出版专著6部,申请软件著作权10余项、发明和实用新型专利8项。


    承担科研项目情况:
  • ( 1 ) 青藏高原湖泊过程及其与大气相互作用的高分辨率模式发展和模拟研究, 负责人, 国家任务, 2017-01--2020-12

    ( 2 ) 面向水资源管理的天然水循环要素遥感监测技术研究, 负责人, 国家任务, 2017-07--2020-12

    ( 3 ) 资源环境承载力综合评价技术系统集成与应用, 负责人, 国家任务, 2017-01--2020-12

    ( 4 ) 一带一路可持续发展指标选择与示范, 参与, 中国科学院计划, 2018-10--2022-12

    ( 5 ) 湖泊演变与气候变化响应, 参与, 国家任务, 2019-11--2022-10

    ( 6 ) 地球大数据支撑水安全可持续发展目标研究, 负责人, 中国科学院计划, 2021-01--2022-12

    ( 7 ) 长江源卓乃湖-盐湖流域河流与湖泊水系统变化研究, 负责人, 国家任务, 2022-01--2025-12

    ( 8 ) 兴都库什-喜马拉雅区域可持续发展遥感评估与能力建设, 负责人, 国家任务, 2022-01--2024-12

    ( 9 ) 青海省河湖水系结构稳定性及灾变风险研究, 负责人, 地方任务, 2021-11--2024-12

    代表论著:
  • (1)学术论文

    [1]Lu, S., Wang, Y., Zhou, J., Hughes, A.C., Li, M., Du, C., Yang, X., Xiong, Y., Zi, F., Wang, W., Zheng, Z., Fang, C., Yu, S. 2022. Active water management brings possibility restoration to degraded lakes in dryland regions: A case study of Lop Nur, China. Scientific Reports, 12:18578. (SCI)

    [2]Lu, S., Jin, J., Zhou, J., Li, X., Ju, J., Li, M., Chen, F., Zhu, L., Zhao, H., Yan, Q., Xie, C., Yao, X. 2021. Drainage basin reorganization and endorheic-exorheic transition triggered by climate change and human intervention. Global and Planetary Change 201: 103494. (SCI)

    [3]Lu, S., Chen, F., Zhou, J., Hughes, A.C., Ma, X., Gao, W. 2020. Cascading implications of a single climate change event for fragile ecosystems on the Qinghai-Tibetan Plateau. Ecosphere, 11(9): e03243. (SCI)

    [4]Lu, S., Ma, J., Ma, X., Tang, H., Zhao, H., and Ali Bai Hasan, M. 2019. Time series of Inland Surface Water Dataset in China (ISWDC) for 2000-2016 derived from MODIS archives. Earth Syst. Sci. Data, 11, 1-10, https://doi.org/10.5194/essd-11-1-2019. (SCI)

    [5]Lu, S., Li, J., Zhang, L., Wei, Y., Baig, M.H.A., Zhai, Z., Meng, J., Li, X., Zhang, G. 2017. Lake water surface mapping in the Tibetan Plateau using the MODIS MOD09Q1 product, Remote Sensing Letters, 8(3): 224-233. (SCI)

    [6]Lu, S., Zhou, J., Dubee, F. 2016. New allies fight for China's environment. Science, 352 (6287), 781. (SCI)

    [7]Lu, S., Zhang, L., Guo, S., Fan, L., Meng, J., Wang, G. 2016. Forty years channel change on the Yongdinghe River, China: Patterns and causes. The International Journal of River Basin Management, 2016, 14(2): 183-193.

    [8]Lu, S., Wu, B., Wei, Y., Yan, N., Wang, H., Guo, S. 2015. Quantifying the impacts of climate variability and human activities on the hydrological system of the Haihe River Basin, China. Environmental Earth Sciences, 73:1491-1503. (SCI)

    [9]Lu, S., Ouyang, N., Wu, B., Wei, Y., Tesemma, Z. 2013. Lake water volume calculation with time series remote-sensing images. International Journal of Remote Sensing, 34(22): 7962-7973. (SCI)

    [10]Lu, S., Wu, B., Wang, H., Ouyang, N., Guo, S. 2012. Hydro-ecological impact of water conservancy projects in the Haihe River Basin. Acta Oecologica, 44: 67-74. (SCI)

    [11]Lu, S., Wu, B., Yan, N., Wang, H. 2011. Water body mapping method with HJ-1A/B satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 3(13): 428-434. (SCI)

    [12]Fang, C., Lu, S., Li, M., Wang, Y., Li, X., Tang, H., Ikhumhen, H.O. 2023. Lake water storage estimation method based on similar characteristics of above-water and underwater topography. Journal of Hydrology, 618, 129146. (SCI)

    [13]Li, M., Lu, S., Du, C., Wang, Y., Fang, C., Li, X., Tang, H., Ali Baig, M.H., Ikhumhen, O. 2022. Time-series surface water reconstruction method (TSWR) based on spatial distance relationship of multi-stage water boundaries. International Journal of Digital Earth, 15(1): 2335–2354. (SCI)

    [14]Tang, H., Lu, S., Baig, M.H.A., Li, M., Fang, C., Wang, Y. 2022. Large-Scale Surface Water Mapping Based on Landsat and Sentinel-1 Images. Water, 14: 1454. (SCI)

    [15]Wang, Y., Lu, S., Zi, F., Tang, H., Li, M., Li, X., Fang, C., Ikhumhen, H.O. 2022. Artificial and Natural Water Bodies Change in China, 2000–2020. Water, 14: 1756. (SCI)

    [16]Chen, Y., Lu, S., Zhou, J., Ali Baig, M.H., Chen, F., Tang, H., Zhang, Y., Yang, X., Ge, L. 2021. Hydrological ecosystem changes and impacts after the Zonag Lake outburst in Hoh Xil of Tibetan Plateau. Journal of Asian Earth Sciences: X 6: 100064.

    [17]Zhai, Z., Lu, S., Wang, P., Tang, H., Liu, D., Han, Q., Guo, J., Liu, X., Wei, T. 2021. Ocean Chlorophyll-a retrieval using GF1-WFV data-a case study of the central Bohai Sea. IOP Conference Series: Earth Environmental Science, 626: 012021.

    [18]Tang, H., Lu, S., Cheng, Y., Ge, L., Zhang, J. 2019. Analysis of dynamic changes and influence factors of Lake Balkhash in the last twenty years. Journal of Groundwater Science and Engineering, 7(3): 214-223.

    [19]Ikhumhen, H.O., Li, T., Lu, S., Matomela, N. 2020. Assessment of a novel data driven habitat suitability ranking approach for Larus relictus specie using remote sensing and GIS. Ecological Modelling, 432: 109221. (SCI)

    [20]Ikhumhen, H.O., Li, T., Lu, S., Matomela, N. 2020. Larus relictus HABITAT HIERARCHICAL EVALUATION BASED ON A DATA DRIVEN APPROACH. Environmental Engineering and Management Journal, 19(12): 2217-2229. (SCI)

    [21]Du, H, Xue, X., Wang, T., Lu, S., Liao, J., Li, S., Fan, Y., Liu, X. 2022. Modeling dust emission in alpine regions with low air temperature and low air pressure – A case study on the Qinghai-Tibetan Plateau (QTP). Geoderma, 422: 115930. (SCI)

    [22]Zhao, G., Yao, P., Fu, L., Zhang, Z., Lu, S., Long, T. 2022. A Deep Learning Method Based on Two-Stage CNN Framework for Recognition of Chinese Reservoirs with Sentinel-2 Images. Water, 14: 3755. (SCI)

    [23]Zhang, S., Ma, Y., Chen, F., Liu, J., Chen, F., Lu, S., Jiang, L., Li, D. 2020. A new method for supporting interpretation of paleochannels in a large scale — Detrended Digital Elevation Model Interpretation. Geomorphology, 369: 107374. (SCI)

    [24]Zhang, Q., Jin, J., Zhu, L., Lu, S. 2018. Modeling of water surface temperature of three lakes on the Tibetan Plateau using a physically based lake model. Atmosphere-Ocean, doi:10.1080/07055900.2018.1474085. (SCI)

    [25]Li J., Guo, Y., Wang, Y., Lu, S., Chen, X. 2018. Drought Propagation Patterns under Naturalized Condition Using Daily Hydrometeorological Data. Advances in Meteorology, https://doi.org/10.1155/2018/2469156. (SCI)

    [26]Zhang, L., Lu, D., Li, Q., Lu, S. 2018. Impacts of socioeconomic factors on cropland transition and its adaptation in Beijing, China. Environmental Earth Sciences, 77: 575. (SCI)

    [27]Zhang, L., Li, X., Lu, S., Jia, K. 2016. Multi-scale object-based measurement of arid plant community structure. International Journal of Remote Sensing, 37(10): 2168-2179. (SCI)

    [28]Zhu, W., Wu, B., Lu, S. 2014. An improved empirical method for large spatial scale surface soil heat flux estimations. Earth and Environmental Science, 17: 1-6. (SCI)

    [29]Baig, M.H.A., Zhang, L., Wang, S., Jiang, G., Lu, S., Tong, Q. 2013. Comparison of MNDWI and DFI for water mapping in flooding season. IEEE IGARSS, 2876-2879.

    [30]Xing, Q., Wu, B., Zhu, W., Lu, S. 2013. The improved ET calculation in winter by introducing radar-based aerodynamic roughness information into ETWatch System. IEEE IGARSS, 1824-1826.

    [31]Wu, W., Zou, L., Shen, X., Lu, S., et al. 2012. Thermal anomalies associated with faults: a case study of the Jinhua–Quzhou basin of Zhejiang Province, China. International Journal of Remote Sensing, 33(6): 1850-1867. (SCI)

    [32]Wu, W., Zou, L., Shen, X., Lu, S., et al. 2012. Thermal infrared remote-sensing detection of thermal information associated with faults: A case study in Western Sichuan Basin, China. Journal of Asian Earth Sciences, 43: 110-117. (SCI)

    [33]Zhang, X., Wu, B., Li, X., Lu, S. 2012. Soil erosion risk and its spatial pattern in upstream area of Guanting reservoir. Environmental Earth Sciences, 65(1): 221-229. (SCI)

    [34]Ouyang, N., Lu, S., Zhu, J., Wu, B., Wang, H. 2011. Wetland Restoration Suitability Evaluation at the Watershed Scale - A Case Study in Upstream of the Yongdinghe River. Procedia Environmental Sciences, 10: 1926-1932.

    [35]Li, R., Shi, J., Zhao, T., Wang, T., Lu, S. 2020. Soil moisture estimation based on Landsat-8 and Modis in the upstream of Luan River Basin China. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM , pp.4922-4925.

    [36]Wang, L., Liu, H., Zhong, X., Zhou, J., Zhu, L., Yao, T., Xie, C., Ju, J., Chen, D., Yang, K., Zhao, L., Lu, S., et al. 2022. Domino effect of a natural cascade alpine lake system on the Third Pole, PNAS Nexus, 1: 1–9. (SCI)

    [37]Guo, H., Liang, D., Sun, Z., Chen, F., Wang, X., Li, J., Bian, J., Wei, Y., Huang, L., Chen, Y., Peng, D., Li, X., Lu, S., Liu, J., Shirazi, Z. 2022. Measuring and evaluating SDG indicators with Big Earth Data. Science Bulletin, 67(17): 1792-1801.

    [38]卢善龙, 贾立, 蒋云钟, 王宗明, 段洪涛, 沈明, 田雨, 卢静. 2021. 联合国可持续发展目标 6(清洁饮水与卫生设施)监测评估:进展与展望. 中国科学院院刊, 36(8):904-913.

    [39]卢善龙, 金继明, 贾立等. 2017. 基于MODIS MOD09Q1的青海、西藏湖泊水面数据集(2000~2012). 中国科学数据, 2(2). DOI: 10.11922/csdata.170.2016.0113.

    [40]卢善龙, 肖高怀, 贾立等. 2016. 2000~2012 年青藏高原湖泊水面时空过程数据集遥感提取. 国土资源遥感. 28(3): 181-187.

    [41]卢善龙, 吴炳方, 李发鹏等. 2010. 河川径流遥感监测研究进展. 地球科学进展, 25(8): 820-826.

    [42]王 辉, 卢善龙, 丁俊, 邱玉宝, 唐海龙, 闫强. 2020. 气候变化对南极冰面湖的影响研究—以埃默里和拉森A冰架为例. 极地研究, 32(3): 322-335.

    [43]马小奇, 卢善龙, 马津等. 2019. 基于地形参数的湖泊水储量估算方法——以青藏高原纳要错为例. 国土资源遥感. 31(4), 167-173.

    [44]翟召坤, 卢善龙, 暴柱等, 2018. 基于GF-1卫星WFV数据的潘家口水库水质参数遥感估算模型研究. 中国水利水电科学研究院学报, 16(4): 297-306.

    [45]马津, 卢善龙, 齐建国, 翟召坤. 2019. 水文资料缺乏区河流流量遥感估算模型研究与应用. 测绘科学, 44(5): 184-190.

    [46]翟召坤, 卢善龙, 王萍等. 2017. 基于NSIDC海冰产品的FY北极海冰数据集优化. 地球信息科学, 19(2): 143-151.

    [47]王浩, 卢善龙, 吴炳方, 李晓松. 2013. 不透水面提取及应用研究进展. 地球科学进展, 28(3): 327-336.

    [48]欧阳宁雷, 卢善龙, 吴炳方, 朱建军, 王浩. 2012. 流域尺度湿地恢复及可行性评价——以白洋淀流域为例. 湿地科学. 10(2): 200-205.

    [49]王京, 卢善龙, 吴炳方等. 2010. 近40年白洋淀湿地土地区覆被变化分析. 地球信息科学学报, 12(2): 292-299.

    [50]陈喜芬, 吴文渊, 卢善龙, 徐俊锋, 张登荣, 胡潭高. 2021. 基于Keyhole和Landsat MSS融合影像的土地利用变化监测研究——以杭州湾南岸为例. 北京师范大学学报(自然科学版), 57(06): 845-853.

    [51]孙玉燕, 张磊, 卢善龙, 刘红超. 2020. 基于动态NDSI阈值的每日积雪监测方法. 地球信息科学学报, 22(2): 298-307.

    [52]肖高怀, 侯淑涛, 卢善龙等. 2015. 基于Saxton 模型的土壤水分特征栅格化计算平台研究. 东北农业大学学报. 46(5): 68-74.

    [53]罗海静, 资锋, 陈玲, 张微, 卢善龙. 2015. 高分一号卫星在国土资源领域的应用及前景. 卫星应用, 3: 41-43.

    (2)专著(参与编写)

    [1]《地球大数据支撑可持续发展目标报告(2021):中国篇》,科学出版社,2022

    [2]《地球大数据支撑可持续发展目标报告(2021):一带一路篇》,科学出版社,2022

    [3]《地球大数据支撑可持续发展目标报告》,科学出版社,2021.

    [4]《地球大数据支撑可持续发展目标报告》,科学出版社,2019.

    [5]《流域下垫面变化及其对洪水径流过程影响分析方法及应用》, 中国水利水电出版社, 2017.

    [6]《三北防护林工程生态环境效应遥感监测与评估研究》, 科学出版社, 2016.

    获奖及荣誉:
  • 2021.7 提出的《“亚洲水塔”失衡失稳对青藏高原河流水系的影响如何?》获选中国科协2021年度10个前沿科学问题

    2022.12 发展的“河流与湖库水下三维地形模拟与无人探测技术”入选水利部2022年度成熟适用水利科技成果推广清单