当前位置:首页 >> 研究队伍
   

研究员

  • 姓名: 李静
  • 性别: 女
  • 职称: 研究员
  • 职务: 
  • 学历: 研究生
  • 电话: 64851880
  • 传真: 
  • 电子邮件: lijing200531@aircas.ac.cn
  • 通讯地址: 奥运园区 C316
    简  历:
  •     李静,中国科学院空天信息创新研究院,研究员。研究方向为植被定量遥感,重点开展植被定量遥感建模、反演与验证方法、以及全球植被变化分析等方面研究。先后主持承担科技部国家重点研发项目、高分重大专项项目、国家自然科学基金面上项目、863及973子课题等10余项。在国内外学术期刊发表学术论文100余篇,其中以第一/通讯作者发表SCI论文38篇,第一完成人国家标准规范1项,参与出版专著11部,申请软件著作权9项、发明和实用新型专利2项。获北京市科技进步二等奖2022(排名7)及测绘科技进步一等奖2021(排名4)。

    工作经历:

    2023.03-至今     中国科学院空天信息创新研究院    研究员

    2018.07-2023.03  中国科学院空天信息创新研究院    副研究员

    2011.04-2018.07  中国科学院遥感与数字地球研究所  副研究员

    2007.06~2011.03  中国科学院遥感应用研究所        助理研究员

    社会任职:
    研究方向:
    承担科研项目情况:
  • (1)国家重点研发计划政府间国际科技创新合作重点专项“亚大热点区域生态系统遥感综合监测”(2019YFE0126700),项目负责人,2020.12-2023.11;

    (2)全球变化及应对专项“全球生态系统碳循环关键参数立体观测与反演”第一课题“陆地碳循环关键植被参数立体观测与反演研究”子课题“植被覆盖度、叶面积指数、聚集指数立体观测与反演研究”( 2017YFA0603001),子课题负责人,2017-2021;

    (3)高分辨率对地观测系统重大专项“GF-6 卫星宽幅相机影像植被参数定量反演技术”(30-Y20A03-9003017/18),项目负责人,2018-2019;

    (4)高分辨率对地观测重大专项“高分共性产品真实性检验平台和产品定型分系统”(21-Y20B02-9003-19/22),子课题负责人,2019.6-2022.12;

    (5)国家自然科学基金面上项目“红边波段的叶片波谱模型改进及叶片叶绿素含量反演方法研究”(42271359),项目负责人,2023-2026;

    (6)国家自然科学基金面上项目“米级分辨率下的植被遥感反射波谱模型构建及叶面积指数反演方法研究”(41671374),课题负责人,2017-2020;

    (7)国家自然科学基金面上项目“非均质混合像元遥感反射波谱模型构建及叶面积指数反演方法研究”(41271366),课题负责人,2013-2016;

    (8)国家自然科学基金青年基金“基于叶片和棉花棉桃组分光学特性研究的模型改进及棉花棉絮量的模型反演方法研究”(40801143),课题负责人,2009-2011;

    代表论著:
  • (1)学术论文

    [1].Chang Liu, Jing Li*, Qinhuo Liu, Jixi Gao, Faisal Mumtaz, Yadong Dong, Cong Wang, Chenpeng Gu, Jing Zhao, Combined influence of ENSO and North Atlantic Oscillation (NAO) on Eurasian Steppe during 1982–2018, Science of The Total Environment, Volume 892, 2023, 164735, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2023.164735.

    [2].Liu, C.; Li, J.*; Liu, Q.; Xu, B.; Dong, Y.; Zhao, J.; Mumtaz, F.; Gu, C.; Zhang, H. Global Comparison of Leaf Area Index Products over Water-Vegetation Mixed Heterogeneous Surface Network (HESNet-WV). Remote Sens. 2023, 15, 1337. https://doi.org/10.3390/ rs15051337 

    [3].Y. Dong, J. Li* et al., "A Method for Retrieving Coarse-Resolution Leaf Area Index for Mixed Biomes Using a Mixed-Pixel Correction Factor," in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-17, 2023, Art no. 4400317, doi: 10.1109/TGRS.2023.3235949. 

    [4].Faisal Mumtaz, Jing Li*, Qinhuo Liu, Aqil Tariq, Arfan Arshad, Yadong Dong, et al. Impacts of Green Fraction Changes on Surface Temperature and Carbon Emissions: Comparison under Forestation and Urbanization Reshaping Scenarios,Remote Sens. 2023, 15(3), 859; https://doi.org/10.3390/rs15030859. Published: 3 February 2023

    [5].J. Zhao, J. Li*, Q. Liu, Z. Zhang and Y. Dong, "Comparative Study of Fractional Vegetation Cover Estimation Methods Based on Fine Spatial Resolution Images for Three Vegetation Types," in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art no. 2508005, doi: 10.1109/LGRS.2022.3222018. 

    [6].Zhang, H., Li, J.*, Liu, Q., Lin, S., Huete, A., Liu, L., Croft, H., Clevers, J. G. P., Zeng, Y., Wang, X., Gu, C., Zhang, Z., Zhao, J., Dong, Y., Mumtaz, F., & Yu, W. (2022). A novel red-edge spectral index for retrieving the leaf chlorophyll content. Methods in Ecology and Evolution, 00, 1– 17. https://doi.org/10.1111/2041-210X.13994 

    [7].Cong Wang, Jing Li*, Qinhuo Liu, et, al. Eastern-Pacific and Central-Pacific Types of ENSO Elicit Diverse Responses of Vegetation in China and Australia,February 2022, Geophysical Research Letters 49(3). DOI: 10.1029/2021GL096666 

    [8].Yu, W.; Li, J.*; Liu, Q.; Zhao, J.; Dong, Y.; Zhu, X.; Lin, S.; Zhang, H.; Zhang, Z. Gap Filling for Historical Landsat NDVI Time Series by Integrating Climate Data. Remote Sens. 2021, 13, 484. https://doi.org/ 10.3390/rs13030484. 

    [9].Yu, W. , Li J* , Liu Q , et al. "Spatial-Temporal Prediction of Vegetation Index With Deep Recurrent Neural Networks." IEEE Geoscience and Remote Sensing Letters ,2021, PP.99:1-5. DOI: 10.1109/LGRS.2021.3064814 

    [10].X.Zhu, J. Li*, Q.Liu et al. "Use of a BP Neural Network and Meteorological Data for Generating Spatiotemporally Continuous LAI Time Series," IEEE Transactions on Geoscience and Remote Sensing,August, 2021, 60, 4405114, DOI:10.1109/TGRS.2021.3095535 

    [11].Shangrong Lin, Jing Li*, Qinhuo Liu, et.al. Improved global estimations of gross primary productivity of natural vegetation types by incorporating plant functional type. JAG. 100 (2021) 102328. https://doi.org/10.1016/j.jag.2021.102328

    [12].Hu Zhang, Jing Li*, Qinhuo Liu, et.al. Estimating Leaf Area Index with Dynamic Leaf Optical Properties. Remote Sensing 13(23):4898. December 2021. DOI: 10.3390/rs13234898

    [13].Zeng, Y.; Badgley, G.; Chen, M.; Li, J.*; Anderegg, L.D.L.; Kornfeld, A.; Liu, Q.; Xu, B.; Yang, B.; Yan, K.; Berry, J.A. A radiative transfer model for solar induced fluorescence using spectral invariants theory. Remote Sens. Environ. 2020, 240, 111678.

    [14].Zhao Jing, Li Jing*, Liu Qinhuo, et.al. Estimating Fractional Vegetation Coverage from Leaf Area Index and Clumping Index Based on the Gap Probability Theory. International Journal of Applied Earth Observations and Geoinformation. 2020. Volume 90, 102112. https://doi.org/10.1016/j.jag.2020.102112

    [15].Xu Baodong, Li Jing*, Liu Qinhuo, et.al. Improving Leaf Area Index retrieval over heterogeneous surface mixed with water. Remote Sensing of Environment. 2020. 240, 111700. DOI:https://doi.org/10.1016/j.rse.2020.111700

    [16].Wentao Yu, Jing Li*, et.al. A Simulation-based Analysis of Topographic Effects on LAI Inversion Over Sloped Terrain. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING. 2020, 13,794-806. DOI: 10.1109/JSTARS.2020.2970999 

    [17].Yelu Zeng, Jing Li*, Qinhuo Liu, et al., A radiative transfer model for patchy landscapes based on stochastic radiative transfer theory. IEEE TGRS. 2020, 58(4), 2571-2589; DOI:10.1109/TGRS.2019.2952377 

    [18].Lin Shangrong, Li Jing*, et.al. Evaluating the Effectiveness of Using Vegetation Indices Based on Red-Edge Reflectance from Sentinel-2 to Estimate Gross Primary Productivity. Remote Sens. 2019, 11, 1303; doi:10.3390/rs11111303

    [19].Ma Qingmiao, Li Yingjie*, Li Jing*, et.al. Modeling of Mixed-Pixel Clumping Index from Remote Sensing Data and Its Evaluation, IEEE JSTARS. 2019, 12(7): 2320-2331. DOI: 10.1109/JSTARS.2019.2897818

    [20].Gaofei Yin *, Aleixandre Verger , Yonghua Qu , Wei Zhao , Baodong Xu, Yelu Zeng , Ke Liu , Jing Li *, Qinhuo Liu. Retrieval of high spatiotemporal resolution leaf area index with Gaussian processes, wireless sensor network and satellite data fusion. ?Remote Sensing 11(3):244 ? January 2019

    [21].Zeng, Y.; Xu, B.; Yin, G.; Wu, S.; Hu, G.; Yan, K.; Yang, B.; Song, W.; Li, J*. Spectral Invariant Provides a Practical Modeling Approach for Future Biophysical Variable Estimations. Remote Sensing. 2018, 10(10), 1508. https://doi.org/10.3390/rs10101508.

    [22].Lin, S.; Li, J.*; Liu, Q.; Huete, A.; Li, L. Effects of Forest Canopy Vertical Stratification on the Estimation of Gross Primary Production by Remote Sensing. Remote Sensing. 2018, 10(9), 1329. https://doi.org/10.3390/rs10091329.

    [23].Yu Wentao, Li Jing*, Liu Qinhuo, et.al. Quantitative analysis of Land surface heterogeneity and its influence on LAI retrieval from remote-sensed data. Remote Sens. 2018, 10, 856; doi:10.3390/rs10060856

    [24].Baodong Xu, Jing Li*, et.al. An integrated method for validating long-term leaf area index products using global networks of site-based measurements. Remote Sensing of Environment. 209 (2018) 134–151. 

    [25].Jing Zhao, Jing Li*, Qinhuo Liu*, Le Yang & Junhua Bai. A method of analyzing LAI underestimation for dense vegetation based on the vertical distribution of the leaf area density. Remote Sensing Letters. Vol. 9(2),2018 DOI:10.1080/2150704X.2017.1399471.

    [26].Zhao Jing, Li Jing*, Liu Qinhuo*, et.al. Comparative analysis of Chinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX sensor data for leaf area index estimation for maize. Remote Sens. 2018, 10, 68; doi:10.3390/rs10010068

    [27].Cong Wang, Jing Li*, Qinhuo Liu*, et.al. Analysis of Differences in Phenology Extracted from the Enhanced Vegetation Index and the Leaf Area Index. Sensors. 2017, 17(9), 1982; doi:10.3390/s17091982

    [28].Yelu Zeng, Jing Li*, Qinhuo Liu*, et.al. An iterative BRDF/NDVI inversion algorithm based on a posteriori variance estimation of observation errors. IEEE Transactions on Geoscience and Remote sensing. November 2016, 54(11):6481-6496. 

    [29].Zeng Y L, Li J*, Liu Q H, Huete A R, Yin G F, Xu B D, Fan W L, Zhao J, Yan K, and Mu X H. A radiative transfer model for heterogeneous agro-forestry scenarios. IEEE Transactions on Geoscience and Remote sensing. August 2016, 54(8):4613-4628. .

    [30].Baodong Xu, Jing Li*, Qinhuo Liu*, et.al. Evaluating Spatial Representativeness of Station Observations for Remotely Sensed Leaf Area Index Products. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING. July 2016, 9(7): 3267-3282. 

    [31].Gaofei Yin, Jing Li*, Qinhuo Liu*, et.al. Improving LAI spatio-temporal continuity using a combination of MODIS and MERSI data. Remote sensing letters. 2016, 7(8):771-780.

    [32].Zeng, Y.; Li, J*.; Liu, Q.; Hu, R.; Mu, X.; Fan, W.; Xu, B.; Yin, G.; Wu, S. Extracting Leaf Area Index by Sunlit Foliage Component from Downward-Looking Digital Photography under Clear-Sky Conditions. Remote Sens. 2015, 7, 13410-13435. (2)

    [33].Zhao, J.; Li, J.*; Liu, Q.; Fan, W.; Zhong, B.; Wu, S.; Yang, L.; Zeng, Y.; Xu, B.; Yin, G. Leaf Area Index Retrieval Combining HJ1/CCD and Landsat8/OLI Data in the Heihe River Basin, China. Remote Sens. 2015, 7, 6862-6885. 

    [34].Yin, G.; Li, J.*; Liu, Q.; Fan, W.; Xu, B.; Zeng, Y.; Zhao, J. Regional Leaf Area Index Retrieval Based on Remote Sensing: The Role of Radiative Transfer Model Selection. Remote Sens. 2015, 7, 4604-4625. 

    [35].Zeng, Y.; Li, J.*; Liu, Q.; Qu, Y.; Huete, A.R.; Xu, B.; Yin, G.; Zhao, J. An Optimal Sampling Design for Observing and Validating Long-Term Leaf Area Index with Temporal Variations in Spatial Heterogeneities. Remote Sens. 2015, 7, 1300-1319. 

    [36].Zeng, Y.L.; Li, J. *; Liu, Q.H.; Li, L.H.; Xu, B.D.; Yin, G.F.; Peng, J.J. A sampling strategy for remotely sensed lai product validation over heterogeneous land surface. IEEE JSTARS. 2014, 7, 3128-3142. 

    [37].Jing Li, Qiang Liu, Qinhuo Liu, Yong Tang, Qing Xiao. A Patch Spectral Purification Method to Extract Field Patch Average Parameter from Moderate Resolution Data. International Journal of Remote Sensing. 2008,29:4993-5011. 

    [38].LI Jing, LIU Qinhuo, LIU Qiang, CHEN Liangfu, BO Junhua & LI Shaokun, Cotton pixel identification with CBERS-02 CCD data based on spectral knowledge, Science in China Ser. E2005,Vol.48 Suppl.129-144.

    [39].张召星,李静*,柳钦火,赵静,董亚冬,李松泽,文远,于文涛.2023.高分一号卫星高时空分辨率植被指数产品验证与分析.遥感学报,27(3):665-676  DOI:10.11834/jrs.20231710.

    [40].赵静,李静*,穆西晗,张召星,董亚冬,吴善龙,仲波,柳钦火.2023.高分一号卫星中国植被覆盖度高时空分辨率产品验证与分析.遥感学报,27(3):689-699  DOI:10.11834/jrs.20231703

    [41].张虎,李静*,柳钦火,张召星,朱欣然,刘畅,赵静,董亚冬,徐保东,蒙继华.2023.基于三维随机辐射传输模型的高分一号中国叶面积指数产品算法.遥感学报,27(3):677-688  DOI:10.11834/jrs.20231708.

    [42].马培培,李静*,柳钦火,何彬彬,赵静. 中国区域MuSyQ叶面积指数产品验证与分析. 遥感学报, 2019, 23(6): 1232-1252.

    [43].林尚荣, 李静*, 柳钦火. 2018. 陆地总初级生产力遥感估算精度分析. 遥感学报, 22(2): 234–254

    [44].王聪,李静*,柳钦火,柏军华,徐保东,赵静,曾也鲁. 黑河流域遥感物候产品验证与分析. 遥感学报,2017,03:442-457.

    [45].夏传福,李静*,柳钦火. 基于MODIS 叶面积指数的遥感物候产品反演方法[J]. 农业工程学报,2012,28(19):103-109. (11)

    [46]. 李松泽, 李静*, 于文涛, 张召星, 吴善龙, 仲波, 柳钦火. MuSyQ高分16米/10天NDVI植被指数产品(2018-2020年中国01版)[J/OL]. 中国科学数据.  2021, Vol.7 (1). DOI: 10.11922/ csdata.2021.0030.zh.

    [47].张虎, 李静*, 张召星, 吴善龙, 仲波, 柳钦火. 2021. MuSyQ高分16米/10天叶面积指数产品(2018–2020年中国01版)[J/OL]. 中国科学数据  2021, Vol.7 (1). DOI: 10.11922/ csdata.2021. 0029.zh.

    [48].赵静, 李静*, 张召星, 吴善龙, 仲波, 柳钦火. 2021. MuSyQ高分16米/10天植被覆盖度产品(2018-2020年中国01版)[J/OL]. 中国科学数据. 2021, Vol.7 (1). DOI: 10.11922/11-6035.csd.2021. 0037.zh.

    [49].李静, 张虎, 王晓函, 张召星, 谷晨鹏, 文远, 褚天嘉, 柳钦火. MuSyQ 30米/10天叶片叶绿素含量产品(2019-2020年中国01版),中国科学数据. 2021, Vol.7 (1). Doi: 10.11922/sciencedb. j00001.00265

    [50].陈勇,李静*,孙林等. 叶面积指数产品真实性检验系统设计与实现. 遥感信息,2020,35(5):57-65

    [51].刘洁,李静*,柳钦火等. 全球典型植被叶片光谱特征及其对LAI反演的影响分析. 遥感技术与应用. 2019, 34(1): 154-165.

    [52].于文涛,李静*,柳钦火等. 中国地表覆盖异质性参数提取与分析. 地球科学进展,2016,31(10):1067-1077

    [53].徐保东、李静*、柳钦火等,叶面积指数产品验证中地面站点观测的尺度代表性评价方法——以CERN站网观测为例. 遥感学报. 2015,19(6):pp910-927.

    [54].徐保东,李静*,柳钦火等. 地面站点观测数据代表性评价方法研究进展. 遥感学报. 2015 ,19(5):pp703-718. (3)

    [55].龙鑫,李静*,柳钦火.植被指数合成算法综述[J].遥感技术与应用,2013,28(6):969-977. (5)

    [56].曾也鲁,李静*,柳钦火,柏军华. 2013. 基于NDVI先验知识的LAI地面采样方法研究. 遥感学报. 17(1):107-121.(5)

    [57].夏传福, 李静*, 柳钦火. 2013. 植被物候遥感监测的研究进展. 遥感学报. 17(1):1-16. (28)

    [58].麻庆苗,李静*,刘强,柳钦火. 混合像元聚集指数研究及尺度分析. 遥感学报. 2012,16(5):895-908. (3)

    [59].曾也鲁,李静*,柳钦火.全球LAI地面验证方法及验证数据综述[J].地球科学进展,2012,27(2):165174. (30)

    (2)标准规范

    [1].李静 、赵静 、邹杰 、曾也鲁 、柳钦火 、李新 、方红亮 、唐伯惠 、范闻捷 、屈永华 、穆西晗 、姜小光 、陈尔学 、吴文斌 、董亚冬 、王新鸿 、刘照言 、尹高飞 、徐保东,国家标准《叶面积指数遥感产品真实性检验》(GB/T 40034-2021),国家市场监督管理总局 国家标准化管理委员会,2021/4/30。

    (3)专著(参与编写)

    [1].柳钦火,吴俊均,李静等,全球陆域生态系统可持续发展态势,中华人民共和国科学技术部国家遥感中心,2021

    [2].柳钦火,牛铮,李丽,俞乐,李静等,“一带一路”生态环境状况,中华人民共和国科学技术部国家遥感中心,2017

    [3]. “一带一路”生态环境状况,中华人民共和国科学技术部国家遥感中心,2015

    [4].中国-东盟区域生态环境状况,中华人民共和国科学技术部国家遥感中心,2014

    [5].中国可持续发展遥感监测报告,社会科学文献出版社,2022年,参与中国植被遥感监测章

    [6].中国可持续发展遥感监测报告,社会科学文献出版社,2021年,参与中国植被遥感监测章

    [7].中国可持续发展遥感监测报告,社会科学文献出版社,2019年,参与中国植被遥感监测章

    [8].中国可持续发展遥感监测报告,社会科学文献出版社,2017年,参与中国植被遥感监测章

    [9].中国可持续发展遥感监测报告,社会科学文献出版社,2016年,参与中国植被遥感监测章

    [10].定量遥感模型、应用与不确定性分析,科学出版社,2009,参与第二章、第六章编写

    [11].全国典型地物标准波谱数据库,科学出版社,2008,参与第四章、第七章编写

    获奖及荣誉:
  • (1)多源协同定量遥感产品生成关键技术与应用,测绘科学技术奖一等奖,2021,排名4

    (2)复杂地表定量遥感建模及航天遥感应用,北京市科学技术进步奖二等奖,2022,排名7