当前位置:首页 >> 研究队伍
   

研究员

  • 姓名: 孙建海
  • 性别: 男
  • 职称: 研究员
  • 职务: 
  • 学历: 研究生
  • 电话: 58887183
  • 传真: 
  • 电子邮件: sunjh@aircas.ac.cn
  • 通讯地址: 中关村园区 737北楼303
    简  历:
  •     孙建海,中国科学院空天信息创新研究院,研究员。研究方向为MEMS气体传感器、微型气相色谱及其检测技术,重点开展MEMS气体传感器、微型色谱、高灵敏检测器等方面研究。先后主持承担科技部国家重点研发项目和课题、国家自然科学基金委员会重点基金、部委和地方科技项目30多项,在国内外学术期刊发表学术论文120篇,参与出版专著5部,申请发明和实用新型专利55项。

    工作经历:

    2023.04-至今        中国科学院空天信息创新研究院     研究员

    2008.12-2023.04     中国科学院空天信息创新研究院     副研究员

    2006.07-2008.12     中国科学院电子学研究所           助理研究员

    社会任职:
    研究方向:
  • MEMS气体传感器、微型气相色谱及其检测技术

    承担科研项目情况:
  • (1)基于BP-ANN的微纳谐振阵列多气体高精度感知技术研究项目  负责人  国家任务 2022.01-2025.12
    (2)基于微色谱-阵列MOS传感器的多组分高精度气体检测关键技术研究项目  负责人  国家任务  2019.01-2022.12
    (3)高灵敏度大动态范围微电流计项目  负责人  国家任务  2022.11-2025.10
    (4)痕量复杂多组分微纳气敏原位传感技术项目 负责人    国家任务 2022.11-2025.10
    (5)高灵敏多组分VOC气体传感技术研究项目 负责人    国家任务 2021.11-2024.10
    代表论著:
  • (1)学术论文
    [1]Chen, T., Sun, J., Xue, N., Zhang, X., Wang, H., Jiang, K., Zhou, T., Quan, H., & Guo, R. (2022). Co, N-doped GQDs/SnO2 mesoporous microspheres exhibit synergistically enhanced gas sensing properties for H2S gas detection. Journal of Materials Chemistry A, 10, 10759-10767. ( 通信作者,SCI, IF=14.511 ,TOP区)
    [2]Sun, X., Chen, T., Liang, Y., Zhang, C., Zhai, S., Sun, J., & Wang, W. (2022). Enhanced sensitivity of SAW based ammonia sensor employing GO-SnO2 nanocomposites. Sensors and Actuators B: Chemical, 132884.(通信作者,SCI, IF=9.221 ,TOP区)
    [3]Zhang, X., Sun, J., Tang, K., Wang, H., Chen, T., Jiang, K., Zhou, T., Quan, H., & Guo, R. (2022). Ultralow detection limit and ultrafast response/recovery of the H2 gas sensor based on Pd-doped rGO/ZnO-SnO2 from hydrothermal synthesis. Microsystems & Nanoengineering, 8(1), 1-12.(通信作者, SCI, IF=8.006 ,TOP区)
    [4]Gong, J., Wang, Z., Tang, Y., Sun, J., Wei, X., Zhang, Q., Tian, G., & Wang, H. (2022). MEMS-based resistive hydrogen sensor with high performance using a palladium-gold alloy thin film. Journal of Alloys and Compounds, 167398. (SCI, IF=6.371)
    [5]Xiang, C., Chen, T., Zhao, Y., Sun, J., Jiang, K., Li, Y., Zhu, X., Zhang, X., Zhang, N., & Guo, R. (2022). Facile Hydrothermal Synthesis of SnO2 Nanoflowers for Low-Concentration Formaldehyde Detection. Nanomaterials, 12(13), 2133. (SCI, IF=5.719)
    [6]Zhang, X., Sun, J., Chen, T., Xiang, C., Zhao, Y., & Zhang, N. (2022). Hydrothermal synthesis of Pd-doped rGO/ZnO-SnO2 nanocomposites for efficient hydrogen detection. Ionics, 28(6), 3013-3021. (SCI, IF=2.961)
    [7]Wu, X., Wang, H., Wang, J., Wang, D., Shi, L., Tian, X., & Sun, J. (2022). VOCs gas sensor based on MOFs derived porous Au@Cr2O3-In2O3 nanorods for breath analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 632, 127752. (SCI, IF=5.518)
    [8]Zhang, H., Yao, Y., Chen, Z., Sun, W., Liu, X., Chen, L., Sun, J., Qiu, X., Yu, D., & Zhang, L. (2022). Real-Time Detection of LAMP Products of African Swine Fever Virus Using Fluorescence and Surface Plasmon Resonance Method. Biosensors, 12(4), 213. (SCI, IF=5.743)
    [9]Yao, P., Xue, N., Yin, S., You, C., Guo, Y., Shi, Y., Liu, T., Yao, L., Zhou, J., Sun, J., Dong., C., Liu, C., & Zhao, M. (2022). Multi-Dimensional Feature Combination Method for Continuous Blood Pressure Measurement Based on Wrist PPG Sensor. IEEE Journal of Biomedical and Health Informatics, 26(8), 3708-3719. (SCI, IF=7.021)
    [10]Guo, R., Zhu, X., Zhu, Z., Sun, J., Li, Y., Hu, W., & Tang, S. (2022). Evaluation of Typical Volatile Organic Compounds Levels in New Vehicles under Static and Driving Conditions. International Journal of Environmental Research and Public Health, 19(12), 7048. (SCI, IF=4.614)
    [11]Shi, L., Wang, H., Wu, X., Wang, D., Zhang, Q., Han, B., Sun, J., Wei, X., & Li, C. (2022). A microfabricated semi-packed column coated with porous layer and ionic liquid for the separation of characteristic markers of non-alcoholic fatty liver disease. Journal of Micromechanics and Microengineering, 32(8), 085007. (SCI, IF=2.282)
    [12]Yin, S., Xue, N., You, C., Guo, Y., Yao, P., Shi, Y., Liu, T., Yao, L., Zhou, J., Sun, J., Dong, C., Liu, C., & Zhao, M. (2021). Wearable Physiological Multi-Vital Sign Monitoring System With Medical Standard. IEEE Sensors Journal, 21(23), 27157-27167. (SCI, IF=4.325)
    [13]Han, B., Liu, T., Wang, H., Shi, L., Chen, J., Sun, J., Wang, J., & Tian, X. (2021). A microcolumn coated with polydimethylsiloxane functionalized by graphene oxide quantum dots for the gas chromatographic separation of characteristic markers of advanced fibrosis. Journal of Micromechanics and Microengineering, 31(3), 035011. (SCI, IF=2.282)
    [14]Sun, J., Chen, T., Tan, T., Wang, D., Zhu, X., Zhang, X., Peng, H., & Luan, Z. (2020). Fabrication and Characterization of a Novel Micro-Thermal Conductivity Detector for Monitoring Small-Molecule Gases. IEEE Sensors Journal, 20(19), 11115-11121. (SCI, IF=4.325)
    [15]Han, B., Wang, J., Yang, W., Chen, X., Wang, H., Chen, J., Zhang, C., Sun, J. & Wei, X. (2020). Hydrothermal synthesis of flower-like In2O3 as a chemiresistive isoprene sensor for breath analysis. Sensors and Actuators B: Chemical, 309, 127788. (SCI, IF=9.221,TOP区)
    [16]Li, Y., Zhu, X., Bi, S., Guo, R., Sun, J., & Hu, W. (2020). Design and development of compliant mechanisms for electromagnetic force balance sensor. Precision Engineering, 64, 157-164. (SCI, IF=3.315)
    [17]Sun, J., Xue, N., Wang, W., Wang, H., Liu, C., Ma, T., Li, T., & Tan, T. (2019). Compact prototype GC-PID system integrated with micro PC and micro GC column. Journal of Micromechanics and Microengineering, 29(3), 035008. (SCI, IF=2.282)
    [18]Sun, X?., Sun, J?., Li, T., Zheng, S., Wang, C., Tan, W., Zhang, J., Liu, C., Ma, T., Qi, Z., Liu, C., & Xue, N. (2019). Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites. Nano-micro letters, 11(1), 1-14. (共同一作,SCI, IF=23.655 ,TOP区)
    [19]Han, B., Wu, G., Huang, H., Liu, T., Wang, J., Sun, J., & Wang, H. (2019). A semi-packed micro GC column for separation of the NAFLD exhaled breath VOCs. Surface and Coatings Technology, 363, 322-329. (SCI, IF=4.865)
    [20]Sun, X., Sun, J., Zheng, S., Wang, C., Tan, W., Zhang, J., Liu, C., Liu, C., Li, T., Qi, Z., & Xue, N. (2019). A sensitive piezoresistive tactile sensor combining two microstructures. Nanomaterials, 9(5), 779. (SCI, IF=5.719)
    [21]Tan, T., Sun, J., Chen, T., Zhang, X., & Zhu, X. (2019). Fabrication of thermal conductivity detector based on mems for monitoring dissolved gases in power transformer. Sensors, 20(1), 106. (SCI, IF=3.847)
    [22]Chen, T., Sun, J., Ma, T., Li, T., Liu, C., Zhu, X., & Xue, N. (2019). Design and analysis of particulate matter air-microfluidic grading chip based on MEMS. Micromachines, 10(8), 497. (SCI, IF=3.523)
    [23]Xue, N., Wang, D., Liu, C., Ke, Z., Elia, P., Li, T., Chi, C., Cheng, Y., & Sun, J. (2018). A biodegradable porous silicon and polymeric hybrid probe for electrical neural signal recording. Sensors and Actuators B: Chemical, 272, 314-323. (通信作者,SCI, IF=9.221 ,TOP区)
    [24]Xue, N., Martinez, I. D., Sun, J., Cheng, Y., & Liu, C. (2018). Flexible multichannel vagus nerve electrode for stimulation and recording for heart failure treatment. Biosensors and Bioelectronics, 112, 114-119. (SCI, IF=12.545,TOP)
    [25]Xue, N., Gao, G., Sun, J., Liu, C., Li, T., & Chi, C. (2018). Systematic study and experiment of a flexible pressure and tactile sensing array for wearable devices applications. Journal of Micromechanics and Microengineering, 28(7), 075019. ((SCI, IF=2.282)
    [26]Xue, N., Liu, C., Sun, J., Li, T., Chi, C., Hee, H. I., & Wang, Y. S. (2018). Miniature force sensing system for monitoring of optimal cricoid pressure for airway protection. IEEE Sensors Journal, 18(10), 4303-4310. ((SCI, IF=4.325)
    [27]Sun J., Guan F.,Zhu X., Ning Z., Ma T., Liu., Deng T. (2016), Micro-fabricated packed gas chromatography column based on laser etching technology. Journal of Chromatography A, 1429,311-316. ((SCI, IF=4.601)
    [28]Zhu, X., Sun, J., Ning, Z., Zhang, Y., & Liu, J. (2016). High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column. Review of Scientific Instruments, 87(4), 044102. ((SCI, IF=1.843)
    [29]Zhang, L. L., Chen, X., Du, Y., Zhang, Q., Li, H., Sun, J. H., & Cui, D. F. (2015). A surface plasmon resonance imaging system for the stimulated living cell analysis. Optoelectronics Letters, 11(1), 77-80. (SCI)
    [30]Sun, J., Cui, D., Guan, F., Chen, X., & Zhang, L. (2014). High resolution microfabricated gas chromatography column with porous silicon acting as support. Sensors and Actuators B: Chemical, 201, 19-24. (SCI, IF=9.221 ,TOP区)
    [31]Sun, J., Cui, D., Guan, F., Zhang, L., Chen, X., & Li, H. (2014). Detection biomarkers of lung cancer using mini-GC-PID system integrated with micro GC column and micro pre-concentrator. Nanoscale Research Letters, 9(1), 1-7. (5.418)
    [32]Sun, J., Guan, F., Cui, D., Chen, X., Zhang, L., & Chen, J. (2013). An improved photoionization detector with a micro gas chromatography column for portable rapid gas chromatography system. Sensors and actuators B: Chemical, 188, 513-518. (SCI, IF=9.221 ,TOP区)
    [33]Sun, J., Cui, D., Chen, X., Zhang, L., Cai, H., & Li, H. (2013). Fabrication and characterization of microelectromechanical systems-based gas chromatography column with embedded micro-posts for separation of environmental carcinogens. Journal of Chromatography A, 1291, 122-128. (4.601)
    [34]Sun, J., Cui, D., Zhang, L., Chen, X., Cai, H., & Li, H. (2013). Fabrication and characterization of a double-heater based MEMS thermal flow sensor. Sensors and Actuators A: Physical, 193, 25-29. (4.291)
    [35]Sun, J., Cui, D., Zhang, L., Chen, X., & Li, H. (2013). A micromachined gas flow sensor with polydimethylsiloxane flow channels. Journal of microelectromechanical systems, 22(3), 723-729. (2.829)
    [36]Li, H., Cui, D., Cai, H., Zhang, L., Chen, X., Sun, J., & Chao, Y. (2013). Use of surface plasmon resonance to investigate lateral wall deposition kinetics and properties of polydopamine films. Biosensors and Bioelectronics, 41, 809-814. (SCI, IF=12.545 ,TOP区)
    [37]Sun, J., Cui, D., Chen, X., Zhang, L., Cai, H., & Li, H. (2011). Design, modeling, microfabrication and characterization of novel micro thermal conductivity detector. Sensors and Actuators B: Chemical, 160(1), 936-941. (SCI, IF=9.221 ,TOP区)
    (2)授权专利
    [1]一种三电极结构的氦离子化检测器,ZL 201610703887.X
    [2]多沟道微型气相色谱柱芯片及制备方法,ZL 2021 1 0834324.5
    [3]悬臂梁结构及制备方法、多组分微纳谐振气体传感器,ZL 2021 1 0828946.7,
    [4]一种基于微型气相色谱的癌症检测系统ZL 202122046494.5 
    [5]一种微型热导检测器集成芯片及制造方法CN201110082184.7
    [6]快速分离的微型气相色谱柱集成芯片CN201110055612.7
    [7]密度分布型的微型色谱柱芯片及其制造方法ZL201810042057.6
    [8]多沟道微型气相色谱柱芯片及制备方法,ZL202110834324.5
    [9]微型热导检测器,ZL201810750496.2
    [10]多传感色谱检测仪及检测方法, ZL201711220619.3
    [11]一种微型气相色谱柱芯片及其制备方法ZL201810179691.4
    [12]一种高灵敏度光离子化检测器ZL201210248560.X
    [13]高选择性阵列MOS传感器, ZL 202020694718.6
    [14]集成化便携式高精度MicroGC-MOS检测仪,ZL202021205443.1
    [15]集成化便携式高精度MicroGC-μTCD检测仪,ZL202021205424.9
    [16]非甲烷总烃的检测系统,ZL202120309681.5
    获奖及荣誉:
  • (1)孙建海(1/10),基于微色谱的快速准确高灵敏气体检测关键技术及应用,北京市科学技术进步奖,2019, 二等奖,  2019-J01-2-01-R01
    (2)孙建海(3/10)高精度高可靠燃气检测关键技术及应用,河南省科学技术进步二等奖,2022,第三完成人(R03)
    (3)孙建海 (1/12),复杂背景气体的高灵敏微型化色谱分离与现场检测技术及其应用,中国分析测试协会科学技术奖(CAIA奖),2018, 二等奖, 2018-2-001-R01
    (4)孙建海 (2/10), 多生理信息高精度检测柔性传感技术及其数字智能诊疗应用,中国分析测试协会科学技术奖(CAIA奖), 2020,二等奖