洪丹枫,中国科学院空天信息创新研究院,研究员,博导,首届国家优秀青年基金(海外)项目获得者,遥感与数字地球中国科学院重点实验室副主任。研究方向为多模态遥感大数据、人工智能,重点开展生成式AI成像、可解释性AI、遥感基础大模型、多模态智能解译、目标检测/识别等方面研究。先后主持科技部国家重点研发项目课题、国家自然科学基金委员会重点专项基金项目课题、国家自然科学基金委员会面上项目等。在国内外学术期刊发表学术论文180余篇,其中SCI期刊论文130余篇(包含17篇ESI热点论文和36篇ESI高被引论文),Google Scholar引用8400余次,参与出版英文专著2部,获得IEEE TGRS、IEEE JSTARS 最佳审稿人奖、国际高光谱顶级会议WHISPERS杰出论文奖(Jose Bioucas Dias奖)、入选全球前2%顶尖科学家榜单、国家优秀自费留学生奖学金、Remote Sensing青年科学家奖、IEEE GRSS 早期职业成就奖(Early Career Award)。IEEE高级会员,担任IEEE TGRS、ISPRS JP&RS、Remote Sensing等期刊副主编/编委。
工作经历
2022.04-至今 中国科学院空天信息创新研究院 研究员
2020.01-2021.12 法国格勒诺布尔阿尔卑斯大学-傅里叶实验室客 座研究员
2019.09-2021.10 德国宇航中心研究员&光谱视觉课题组 组长
2015.09-2019.08 德国宇航中心 副研究员
多模态遥感大数据
人工智能
目标检测/识别
数据智能融合
高光谱遥感图像分析
(1)国家优秀青年基金(海外)项目 项目负责人 国家任务 2022.01—2024.12
(2)科技部国家重点研发项目 课题负责人 国家任务 2022.12—2026.12
(3)国家自然科学基金委员会重点专项项目 课题负责人 国家任务 2023.01—2026.12
(4)国家自然科学基金委员会面上项目 项目负责人 国家任务 2023.01—2026.12
(1)学术论文
[1]Hong, D., Gao, L., Yao, J., Zhang, B., Plaza, A. and Chanussot, J., 2021. Graph convolutional networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 59(7), pp.5966-5978. (SCI)
[2]Hong, D., Gao, L., Yokoya, N., Yao, J., Chanussot, J., Du, Q. and Zhang, B., 2021. More diverse means better: Multimodal deep learning meets remote-sensing imagery classification. IEEE Transactions on Geoscience and Remote Sensing, 59(5), pp.4340-4354. (SCI)
[3]Hong, D., Yokoya, N., Chanussot, J. and Zhu, X.X., 2019. An augmented linear mixing model to address spectral variability for hyperspectral unmixing. IEEE Transactions on Image Processing, 28(4), pp.1923-1938. (SCI)
[4]Hong, D., Hu, J., Yao, J., Chanussot, J. and Zhu, X.X., 2021. Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model. ISPRS Journal of Photogrammetry and Remote Sensing, 178, pp.68-80. (SCI)
[5]Hong, D., He, W., Yokoya, N., Yao, J., Gao, L., Zhang, L., Chanussot, J. and Zhu, X., 2021. Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing. IEEE Geoscience and Remote Sensing Magazine, 9(2), pp.52-87. (SCI)
[6]Hong, D., Yokoya, N., Chanussot, J., Xu, J. and Zhu, X.X., 2021. Joint and progressive subspace analysis (JPSA) with spatial–spectral manifold alignment for semisupervised hyperspectral dimensionality reduction. IEEE Transactions on Cybernetics, 51(7), pp.3602-3615. (SCI)
[7]Hong, D., Gao, L., Yao, J., Yokoya, N., Chanussot, J., Heiden, U. and Zhang, B., 2022. Endmember-guided unmixing network (EGU-Net): A general deep learning framework for self-supervised hyperspectral unmixing. IEEE Transactions on Neural Networks and Learning Systems, 33(11), pp.6518-6531. (SCI)
[8]Hong, D., Yokoya, N., Chanussot, J., Xu, J. and Zhu, X.X., 2019. Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction. ISPRS journal of photogrammetry and remote sensing, 158, pp.35-49. (SCI)
[9]Hong, D., Yokoya, N., Ge, N., Chanussot, J. and Zhu, X.X., 2019. Learnable manifold alignment (LeMA): A semi-supervised cross-modality learning framework for land cover and land use classification. ISPRS journal of photogrammetry and remote sensing, 147, pp.193-205. (SCI)
[10]Hong, D., Han, Z., Yao, J., Gao, L., Zhang, B., Plaza, A. and Chanussot, J., 2022. SpectralFormer: Rethinking hyperspectral image classification with transformers. IEEE Transactions on Geoscience and Remote Sensing, 60, pp.1-15. (SCI)
(2)专著(参与编写)
[1]Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences,John Wiley & Sons出版社,2021
[2]Compressed Sensing in Information Processing,Springer Nature出版社,2022
(1)IEEE GRSS Early Career Award (早期职业成就奖),2022
(2)科睿唯安2022年度全球“高被引科学家”,2022 (3)国家优秀自费留学生奖学金,2022 (4)全球前2%顶尖科学家榜单,2022 (3)IEEE JSTARS Best Reviewer Award,2022 (6)IEEE TGRS Best Reviewer Award,2022 (7)Remote Sensing Young Investigator Award(青年科学家奖),2022 (8)IEEE TGRS Best Reviewer Award,2021
(4)全球前2%顶尖科学家榜单,2021 (10)第11届国际高光谱图像与信息处理研讨会(WHISPERS)杰出论文奖(Jose Bioucas Dias奖,唯一),2021 (11)慕尼黑工业大学最佳博士论文奖,2019
研究队伍