当前位置:首页 >> 研究队伍
   

研究员

  • 姓名: 李子申
  • 性别: 男
  • 职称: 研究员
  • 职务: 主任
  • 学历: 研究生
  • 电话: 010-82178892
  • 传真: 
  • 电子邮件: lizishen@aircas.ac.cn
  • 通讯地址: 新技术园区 D座802 济南园区 小鸭K305
    简  历:
  •     李子申,中国科学院空天信息创新研究院,研究员、博士生导师,现任齐鲁空天信息研究院35室主任,研究方向为北斗精准定位与导航,重点开展北斗精准可信定位、电离层监测建模、自动驾驶导航等方面研究,国家优秀人才计划获得者,入选中国科学院卢嘉锡国际合作团队、中国科学院启明星复合型人才和中国科学院青年促进会,兼任国际大地测量协会(IAG)实时电离层工作组主席,建设国际GNSS服务组织电离层分析中心(CAS);先后承担国家重点研发计划、北斗重大专项、国家自然科学基金、部委和地方科技项目20余项,在国内外学术期刊发表学术论文80余篇,引用2400余次,参与出版专著1部,曾获国家科技进步二等奖、北京市自然科学二等奖、湖北省自然科学一等奖、中国发明专利优秀奖等荣誉。

    工作经历:

    2019.01-至今          中国科学院空天信息创新研究院  研究员 主任 担任科技部“北斗星动能”科技示范工程副总师 

    2021年8月期间         赴齐鲁空天信息研究院负责组建导航与遥感融合应用研究室(35室)

    2015.12-2018.12       中国科学院光电研究院          副研究员 担任转发式卫星导航试验系统总师助理 

    2016.04-2016.10       赴澳大利亚皇家墨尔本理工大学  高级访问学者

    2013.03-2015.11       中国科学院光电研究院          助理研究员 

    2013.12 -2014.02      赴荷兰代尔夫理工大学          访问学者

    社会任职:
    研究方向:
  • 北斗精准导航定位

    承担科研项目情况:
  • (1)融合非同步星地异构GNSS、测高和DORIS观测的全球电离层TEC实时精确监测方法, 负责人, 国家任务, 2021.012024.12

    (2)卫星导航电离层建模与应用, 负责人, 国家任务, 2022.01-2024.12

    (3)基于北斗导航的精准信息智能服务与示范应用, 参与, 国家任务, 2021.09-2024.08

    (4)“北斗星动能”科技示范工程(一期), 负责人, 地方任务, 2021.11-2024.10

    (5)“北斗星动能”科技示范工程(二期), 负责人, 地方任务, 2021.12-2025.11

    代表论著:
  • (1)学术论文

    [1].Liu, A., et al., SHAKING: Adjusted spherical harmonics adding KrigING method for near real-time ionospheric modeling with multi-GNSS observations. Advances in Space Research, 2023.71(1): p.67-79.

    [2].Wang, Z., et al., Real-Time Precise Orbit Determination for LEO between Kinematic and Reduced-Dynamic with Ambiguity Resolution. Aerospace, 2022.9(1): p.25.

    [3].Wang, Z., et al., Comparison of the real-time precise orbit determination for LEO between kinematic and reduced-dynamic modes. Measurement, 2022.187: p.110224.

    [4].Wang, N., et al., A Station-Specific Ionospheric Modeling Method for the Estimation and Analysis of BeiDou-3 Differential Code Bias Parameters. NAVIGATION: Journal of the Institute of Navigation, 2022.69(1): p. navi.509.

    [5].Li, Z., et al., Real-time GNSS precise point positioning with smartphones for vehicle navigation. Satellite Navigation, 2022.3(1): p.19.

    [6].Zhao, J., et al., Integrity investigation of global ionospheric TEC maps for high-precision positioning. Journal of Geodesy, 2021.95(3): p.35.

    [7].Wang, L., et al., Real-time GNSS precise point positioning for low-cost smart devices. GPS Solutions, 2021.25(2): p.69.

    [8].Wang, N., et al., BeiDou Global Ionospheric delay correction Model (BDGIM): performance analysis during different levels of solar conditions. GPS Solutions, 2021.25(3): p.97.

    [9].Li, Z., et al., Status of CAS global ionospheric maps after the maximum of solar cycle 24. Satellite Navigation, 2021.2(1): p.19.

    [10].Zhang, W., et al., Algorithm Research Using GNSS-TEC Data to Calibrate TEC Calculated by the IRI-2016 Model over China. RemoteSensing,2021.13(19): p.4002.

    [11].Li, W., et al., A satellite-based method for modeling ionospheric slant TEC from GNSS observations: algorithm and validation. GPS Solutions, 2021. 26(1): p.14.

    [12].Li, R., et al., Considering inter-receiver pseudorange biases for BDS-2 precise orbit determination. Measurement, 2021.177: p.109251.

    [13].Liu, A., et al., Analysis of the Short-term Temporal Variation of Differential Code Bias in GNSS Receiver. Measurement, 2020: p.107448.

    [14].Li, Z., et al., IGS real-time service for global ionospheric total electron content modeling. Journal of Geodesy, 2020.94(3): p.32.

    [15].Zhao, J., et al., High-rate Doppler-aided cycle slip detection and repair method for low-cost single-frequency receivers. GPS Solutions, 2020.24(3): p. 80.

    [16].Zhang, Y., et al., Orbital Design of LEO Navigation Constellations and Assessment of Their Augmentation to BDS. Advances in Space Research, 2020.

    [17].Wang, N., et al., GPS and GLONASS observable-specific code bias estimation: comparison of solutions from the IGS and MGEX networks. Journal of Geodesy, 2020.94(8): p.74.

    [18].李子申, 王宁波与袁运斌, 多模多频卫星导航系统码偏差统一定义与处理方法. 导航定位与授时, 2020. 2020(5): 第10-20页.

    [19].Li, W., et al., Adaptation of the NeQuick2 model for GNSS wide-area ionospheric delay correction in China and the surrounding areas. Advances in Space Research, 2020.

    [20].汪亮等, 面向Android智能终端的多模GNSS实时非差精密定位. 导航定位与授时, 2019. 6(3): 第p1-10页.

    [21].Wang, L., et al., Investigation of the performance of real-time BDS-only precise point positioning using the IGS real-time service. GPS Solutions, 2019. 23(3): p.66.

    [22].Wang, N., et al., Refinement of global ionospheric coefficients for GNSS applications: Methodology and results. Advances in Space Research, 2019. 63(1): p. 343-358.

    [23].Li, Z., et al., Regional ionospheric TEC modeling based on a two-layer spherical harmonic approximation for real-time single-frequency PPP. Journal of Geodesy, 2019.93(9): p.1659-1671.

    [24].Wang, L., et al., Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service. Remote Sensing, 2018.10(2): p.337.

    [25].Wang, Z., et al., Assessment of Multiple GNSS Real-Time SSR Products from Different Analysis Centers. ISPRS International Journal of Geo-Information, 2018.7(3): p.85.

    [26].Zhao, J., et al., The First Result of Relative Positioning and Velocity Estimation Based on CAPS. Sensors, 2018.18(5): p.1528.

    [27].Liu, A., et al., Validation of CAS’s final global ionospheric maps during different geomagnetic activities from 2015 to 2017. Results in Physics, 2018.

    [28].Wang, N., et al., Ionospheric correction using GPS Klobuchar coefficients with an empirical night-time delay model. Advances in Space Research, 2018.

    [29].Wang, N., et al., GPS, BDS and Galileo ionospheric correction models: An evaluation in range delay and position domain. Journal of Atmospheric and Solar-Terrestrial Physics, 2018: p.S1364682617303358.

    [30].Li, L., et al., Integrity monitoring-based ambiguity validation for triple-carrier ambiguity resolution. GPS Solutions, 2017.21(2): p.797-810.

    [31].李子申等, 国际GNSS服务组织全球电离层TEC格网精度比较与分析. 地球物理学报, 2017(10).

    [32].Wang, N., et al., An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC. GPS Solutions, 2017.21(2): p.605-615.

    [33].王宁波等, 不同NeQuick电离层模型参数的应用精度分析. 测绘学报, 2017. 46(4): 第421-429页.

    [34].Li, L., et al., Integrity monitoring-based ratio test for GNSS integer ambiguity validation. GPS Solutions, 2016.20(3): p.573-585.

    [35].Wang, L., et al., Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services. Sensors, 2016. 16(12): p. 2201-2215.

    [36].汪亮等, BDS/GPS/GLONASS组合的双频单历元相对定位性能对比分析. 科学通报, 2015. 60(9): 第857-868页.

    [37].Li, Z., et al., SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. Journal of Geodesy, 2015.89(4): p.331-345.

    [38].Zishen, L., et al., Determination of the Differential Code Bias for Current BDS Satellites. IEEE Transactions on Geoscience and Remote Sensing, 2014. 52(7): p.3968-3979.

    [39].Li, Z., et al., Two-step method for the determination of the differential code biases of COMPASS satellites. Journal of Geodesy, 2012.86(11): p.1059-1076.

    (2)专著(参与编写)

    卫星导航电离层建模与应用,袁运斌、李子申、王宁波、霍星亮,国防工业出版社,2021

    获奖及荣誉:
  • (1)2023年度,获中国发明专利优秀奖(排名第一)

    (2)2022年度,获北京市自然科学二等奖(排名第一)

    (3)2022年度,获湖北省自然科学一等奖(排名第三)

    (4)2020年度,获中国科学院青年促进会会员资助

    (5)2017年度,获国家科技进步二等奖(排名第六)

    (6)2016年度,获中国科学院复合型启明星人才资助

    (7)2015年度,获澳大利亚Endeavor奖励计划(大陆仅16人)