李子申,中国科学院空天信息创新研究院,研究员、博士生导师,现任齐鲁空天信息研究院35室主任,研究方向为北斗精准定位与导航,重点开展北斗精准可信定位、电离层监测建模、自动驾驶导航等方面研究,国家优秀人才计划获得者,入选中国科学院卢嘉锡国际合作团队、中国科学院启明星复合型人才和中国科学院青年促进会,兼任国际大地测量协会(IAG)实时电离层工作组主席,建设国际GNSS服务组织电离层分析中心(CAS);先后承担国家重点研发计划、北斗重大专项、国家自然科学基金、部委和地方科技项目20余项,在国内外学术期刊发表学术论文80余篇,引用2400余次,参与出版专著1部,曾获国家科技进步二等奖、北京市自然科学二等奖、湖北省自然科学一等奖、中国发明专利优秀奖等荣誉。
工作经历:
2019.01-至今 中国科学院空天信息创新研究院 研究员 主任 担任科技部“北斗星动能”科技示范工程副总师
2021年8月期间 赴齐鲁空天信息研究院负责组建导航与遥感融合应用研究室(35室)
2015.12-2018.12 中国科学院光电研究院 副研究员 担任转发式卫星导航试验系统总师助理
2016.04-2016.10 赴澳大利亚皇家墨尔本理工大学 高级访问学者
2013.03-2015.11 中国科学院光电研究院 助理研究员
2013.12 -2014.02 赴荷兰代尔夫理工大学 访问学者
北斗精准导航定位
(1)融合非同步星地异构GNSS、测高和DORIS观测的全球电离层TEC实时精确监测方法, 负责人, 国家任务, 2021.012024.12
(2)卫星导航电离层建模与应用, 负责人, 国家任务, 2022.01-2024.12
(3)基于北斗导航的精准信息智能服务与示范应用, 参与, 国家任务, 2021.09-2024.08
(4)“北斗星动能”科技示范工程(一期), 负责人, 地方任务, 2021.11-2024.10
(5)“北斗星动能”科技示范工程(二期), 负责人, 地方任务, 2021.12-2025.11
(1)学术论文
[1].Liu, A., et al., SHAKING: Adjusted spherical harmonics adding KrigING method for near real-time ionospheric modeling with multi-GNSS observations. Advances in Space Research, 2023.71(1): p.67-79.
[2].Wang, Z., et al., Real-Time Precise Orbit Determination for LEO between Kinematic and Reduced-Dynamic with Ambiguity Resolution. Aerospace, 2022.9(1): p.25.
[3].Wang, Z., et al., Comparison of the real-time precise orbit determination for LEO between kinematic and reduced-dynamic modes. Measurement, 2022.187: p.110224.
[4].Wang, N., et al., A Station-Specific Ionospheric Modeling Method for the Estimation and Analysis of BeiDou-3 Differential Code Bias Parameters. NAVIGATION: Journal of the Institute of Navigation, 2022.69(1): p. navi.509.
[5].Li, Z., et al., Real-time GNSS precise point positioning with smartphones for vehicle navigation. Satellite Navigation, 2022.3(1): p.19.
[6].Zhao, J., et al., Integrity investigation of global ionospheric TEC maps for high-precision positioning. Journal of Geodesy, 2021.95(3): p.35.
[7].Wang, L., et al., Real-time GNSS precise point positioning for low-cost smart devices. GPS Solutions, 2021.25(2): p.69.
[8].Wang, N., et al., BeiDou Global Ionospheric delay correction Model (BDGIM): performance analysis during different levels of solar conditions. GPS Solutions, 2021.25(3): p.97.
[9].Li, Z., et al., Status of CAS global ionospheric maps after the maximum of solar cycle 24. Satellite Navigation, 2021.2(1): p.19.
[10].Zhang, W., et al., Algorithm Research Using GNSS-TEC Data to Calibrate TEC Calculated by the IRI-2016 Model over China. RemoteSensing,2021.13(19): p.4002.
[11].Li, W., et al., A satellite-based method for modeling ionospheric slant TEC from GNSS observations: algorithm and validation. GPS Solutions, 2021. 26(1): p.14.
[12].Li, R., et al., Considering inter-receiver pseudorange biases for BDS-2 precise orbit determination. Measurement, 2021.177: p.109251.
[13].Liu, A., et al., Analysis of the Short-term Temporal Variation of Differential Code Bias in GNSS Receiver. Measurement, 2020: p.107448.
[14].Li, Z., et al., IGS real-time service for global ionospheric total electron content modeling. Journal of Geodesy, 2020.94(3): p.32.
[15].Zhao, J., et al., High-rate Doppler-aided cycle slip detection and repair method for low-cost single-frequency receivers. GPS Solutions, 2020.24(3): p. 80.
[16].Zhang, Y., et al., Orbital Design of LEO Navigation Constellations and Assessment of Their Augmentation to BDS. Advances in Space Research, 2020.
[17].Wang, N., et al., GPS and GLONASS observable-specific code bias estimation: comparison of solutions from the IGS and MGEX networks. Journal of Geodesy, 2020.94(8): p.74.
[18].李子申, 王宁波与袁运斌, 多模多频卫星导航系统码偏差统一定义与处理方法. 导航定位与授时, 2020. 2020(5): 第10-20页.
[19].Li, W., et al., Adaptation of the NeQuick2 model for GNSS wide-area ionospheric delay correction in China and the surrounding areas. Advances in Space Research, 2020.
[20].汪亮等, 面向Android智能终端的多模GNSS实时非差精密定位. 导航定位与授时, 2019. 6(3): 第p1-10页.
[21].Wang, L., et al., Investigation of the performance of real-time BDS-only precise point positioning using the IGS real-time service. GPS Solutions, 2019. 23(3): p.66.
[22].Wang, N., et al., Refinement of global ionospheric coefficients for GNSS applications: Methodology and results. Advances in Space Research, 2019. 63(1): p. 343-358.
[23].Li, Z., et al., Regional ionospheric TEC modeling based on a two-layer spherical harmonic approximation for real-time single-frequency PPP. Journal of Geodesy, 2019.93(9): p.1659-1671.
[24].Wang, L., et al., Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service. Remote Sensing, 2018.10(2): p.337.
[25].Wang, Z., et al., Assessment of Multiple GNSS Real-Time SSR Products from Different Analysis Centers. ISPRS International Journal of Geo-Information, 2018.7(3): p.85.
[26].Zhao, J., et al., The First Result of Relative Positioning and Velocity Estimation Based on CAPS. Sensors, 2018.18(5): p.1528.
[27].Liu, A., et al., Validation of CAS’s final global ionospheric maps during different geomagnetic activities from 2015 to 2017. Results in Physics, 2018.
[28].Wang, N., et al., Ionospheric correction using GPS Klobuchar coefficients with an empirical night-time delay model. Advances in Space Research, 2018.
[29].Wang, N., et al., GPS, BDS and Galileo ionospheric correction models: An evaluation in range delay and position domain. Journal of Atmospheric and Solar-Terrestrial Physics, 2018: p.S1364682617303358.
[30].Li, L., et al., Integrity monitoring-based ambiguity validation for triple-carrier ambiguity resolution. GPS Solutions, 2017.21(2): p.797-810.
[31].李子申等, 国际GNSS服务组织全球电离层TEC格网精度比较与分析. 地球物理学报, 2017(10).
[32].Wang, N., et al., An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC. GPS Solutions, 2017.21(2): p.605-615.
[33].王宁波等, 不同NeQuick电离层模型参数的应用精度分析. 测绘学报, 2017. 46(4): 第421-429页.
[34].Li, L., et al., Integrity monitoring-based ratio test for GNSS integer ambiguity validation. GPS Solutions, 2016.20(3): p.573-585.
[35].Wang, L., et al., Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services. Sensors, 2016. 16(12): p. 2201-2215.
[36].汪亮等, BDS/GPS/GLONASS组合的双频单历元相对定位性能对比分析. 科学通报, 2015. 60(9): 第857-868页.
[37].Li, Z., et al., SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. Journal of Geodesy, 2015.89(4): p.331-345.
[38].Zishen, L., et al., Determination of the Differential Code Bias for Current BDS Satellites. IEEE Transactions on Geoscience and Remote Sensing, 2014. 52(7): p.3968-3979.
[39].Li, Z., et al., Two-step method for the determination of the differential code biases of COMPASS satellites. Journal of Geodesy, 2012.86(11): p.1059-1076.
(2)专著(参与编写)
卫星导航电离层建模与应用,袁运斌、李子申、王宁波、霍星亮,国防工业出版社,2021
(1)2023年度,获中国发明专利优秀奖(排名第一)
(2)2022年度,获北京市自然科学二等奖(排名第一)
(3)2022年度,获湖北省自然科学一等奖(排名第三)
(4)2020年度,获中国科学院青年促进会会员资助
(5)2017年度,获国家科技进步二等奖(排名第六)
(6)2016年度,获中国科学院复合型启明星人才资助
(7)2015年度,获澳大利亚Endeavor奖励计划(大陆仅16人)
研究队伍