当前位置:首页 >> 研究队伍
   

研究员

  • 姓名: 李莘莘
  • 性别: 男
  • 职称: 研究员
  • 职务: 
  • 学历: 博士研究生
  • 电话: 
  • 传真: 
  • 电子邮件: lishenshen@aircas.ac.cn
  • 通讯地址: 
    简  历:
  • 李莘莘,中国科学院空天信息创新研究院,研究员。中国科学院青促会会员,美国EMORY大学访问学者。研究方向为大气遥感,重点开展碳排放、环境监测、公共健康等领域等方面研究。先后主持承担科技部国家重点研发项目1项(碳排放监测数据质量控制关键测量技术及标准研究)、课题1项、国家自然科学基金项目4项(含重大研究计划1项、面上2项、青年1项)、高分重大专项项目1项、部委和地方科技项目10项等,在国内外学术期刊发表学术论文115篇(含一作/通讯SCI论文30篇),参与出版专著2部,申请发明专利25项,编制标准2项,获得省部级等奖项4项。


    工作经历:

    2024.12—至今     中国科学院空天信息创新研究院    研究员

    2018.07—2024.12  中国科学院空天信息创新研究院    副研究员

    2013.04—2018.07  中国科学院遥感与数字地球研究所  副研究员

    2010.06—2013.04  中国科学院遥感应用研究所        助理研究员

    2010.09—2014.04  美国EMORY大学环境健康系         博士后/访问学者


    社会任职:
    研究方向:
  • 大气成份卫星遥感反演


    承担科研项目情况:
  • (1) 国家重点研发计划项目,碳排放监测数据质量控制关键测量技术及标准研究,2022.10-2025.9,主持

    (2) 国家重点研发计划课题,排放源清单多维校验技术,2016.7–2019.7,主持

    (3) 国家自然科学基金(面上)项目,主被动遥感在黑碳气溶胶反演与排放校验中的方法研究,2021.1–2024.12,主持

    (4) 国家自然科学基金(重大研究计划)项目,卫星遥感在大气细颗粒物组份探测与暴露评价中的应用研究,2016.1–2018.12,主持

    (5) 国家自然科学基金(面上)项目,基于多角度遥感和大气模式数据的气溶胶组份反演算法研究,2015.1–2018.12,主持

    (6) 国家自然科学基金(青年)项目,基于遥感与大气模式数据的霾光学厚度反演算法研究,2012.1–2014.12,主持

    (7) 高分专项共性技术研究项目,基于多角度偏振的云反演、水汽订正等预处理技术,2015.1–2017.1,主持

    (8) 中国科学院遥感与数字地球研究所所长基金, 基于多角度遥感数据的黑碳气溶胶反演算法,2013.5– 2015.5,主持

    (9) 国家能源集团委托项目,煤矿温室气体监测系统建设,2024.9-2025.12,主持


    代表论著:
  • 1学术论文

    [1] Shenshen Li, et al., Comparisons of the vertical distributions of aerosols in the CALIPSO and GEOS-Chem datasets in China, Atmospheric Environment, 2019, 3, 100036.

    [2] Shenshen Li, et al., Inter-comparison of model-simulated and satellite-retrieved componential aerosol optical depths in China, Atmospheric Environment, 2016, 114, 320-332.

    [3] Shenshen Li, et al., Estimation of GEOS-Chem and GOCART simulated aerosol profiles using CALIPSO observations over the Contiguous United States, Aerosol and Air Quality Research, 2016, 16, 3256-3265.

    [4] Shenshen Li, et al., Satellite and ground observations of severe air pollution episodes in the winter of 2013 in Beijing, China, Aerosol and Air Quality Research, 2016, 16, 977-989.

    [5] Shenshen Li, et al., Improving satellite-retrieved aerosol microphysical properties using GOCART Data, Atmospheric Measurement Techniques, 2015, 8: 1157-1171.

    [6] Shenshen Li, et al., Comparison of GEOS-Chem aerosol optical depth with AERONET and MISR data over the contiguous United States, Journal of Geophysical Research-Atmosphere, 2013, 118, 11228-11241.

    [7] Shenshen Li, et al., Retrieval of the Haze Optical Thickness in North China Plain using MODIS data, IEEE transaction on Geoscience and Remote Sensing, 2013, 51: 2528-2540.

    [8] Shenshen Li, et al., Retrieval of Aerosol Optical Depth over Bright Targets in the Urban Areas of North China during Winter, Science China Earth Sciences, 2012, 55: 1545-1553.

    [9] 李莘莘,等,城市与冬季北方亮目标地区气溶胶光学厚度反演,中国科学D 刊, 2012, 42:1253-1263.

    [1]李莘莘,等,基于HJ–1–CCD数据的地表反射率反演与验证,光谱学与光谱分析,2011,31: 516– 520.

    [2]Kun Cai, Liuyin Guan , Shenshen Li*, et al., Full-coverage estimation of CO2 concentrations in China via multisource satellite data and Deep Forest model, Scientific Data, 2024,11

    [3]Kun Cai, …, Shenshen Li*, et al., Accuracy Verification of Satellite Products and Temporal and Spatial Distribution Analysis and Prediction of the CH4 Concentration in China, Remote Sensing, 2023.

    [4]Kun Cai, …, Shenshen Li*, et al., Evaluation of TropOMI and OMI Troposhperic NO2 Products Using Measurements from MAX-DOAS and State-Controlled Sations in Jiangsu Province of China, Atmosphere, 2022.

    [5]Yang Liu, …, Shenshen Li*, et al., Spatiotemporal evolution analysis of NO2 Column density before and after COVID-19 pandemic in Henan Province based on SI-APSTE model, Scientific Reports. 2021.

    [6]Yang Liu, …, Shenshen Li*, et al., Research Progress on Models, Algorithms, and Systems for Remote Sensing Spatial-Temporal Big Data Processing, IEEE Joural of Selected Topics in Applied Earth Observations and Remote Sensing, 2021.

    [7]Yang Liu, …, Shenshen Li*, et al., Research on Generic Optical Remote Sensing Products: A Review of Scientific Exploration, Technology Research, and Engineering Application, IEEE Joural of Selected Topics in Applied Earth Observations and Remote Sensing, 2021.

    [8]Lei Wang, …, Shenshen Li*, et al., Evaluation of Himawari-8 version 2.0 aerosol products against AERONET ground-based measurements over central and northern China, Atmospheric Environment, 2020.

    [9]Lei Wang, …, Shenshen Li*, et al.,Retrieval of Aerosol Optical Depth from the Himawari-8 Advanced Himawari Imager data: Application over Beijing in the summer of 2016, Atmospheric Environment, 2020.

    [10]Zhongting Wang,…, Shenshen Li*, et al., Aerosol Retrieval in the Autumn and Winter From the Red and 2.12 μm Bands of MODIS, IEEE transaction on Geoscience and Remote Sensing, 2019.

    [11]Meng Fan, ..., Shenshen Li*, et al., Optical Properties of Chain-like Soot with Water Coating, Particuology, 2019.

    [12]Kun Cai, Shenshen Li*, et al., Spatio-temporal Variations in NO2 and PM2.5 over the Central Plains Economic Region of China during 2005-2015 Based on Satellite Observations, Aerosol and Air Quality Research, 18: 1221–1235, 2018.

    [13]Kun Cai, Qiushuang Zhang, Shenshen Li*, et al., Spatial-Temporal Variations of NO2 and PM2.5 over the Chengdu-Chongqing Economic Zone in China from 2005 to 2015 Based on Satellite Remote Sensing, Sensors, 2018.

    [14]Huazhe Shang,…, Shenshen Li*, et al., Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data, Scientific Reports, 2018.

    [15]Yang Wang, Liangfu Chen, Shenshen Li*, et al., Interference of Heavy Aerosol Loading on Aerosol Optical Depth (AOD) Retrieval Algorithm, Remote Sensing, 2017, 9, 397.

    2专著(参与编写)

    [1] 《气溶胶遥感定量反演研究与应用》(排名第二),科学出版社,2011

    [2] 《大气遥感定量反演算法与系统》(排名第四),科学出版社,2014

    3标准规范

    [1] 卫星对地观测下的碳指标监测(排名第二),团体标准,2022

    [2] 卫星对地观测下的森林碳指标监测体系(排名第四),团体标准,2022


    获奖及荣誉:
  • (1) 中国科学院青年促进会会员,2017

    (2) 河南省科技进步二等奖(排名第二),2023,面向目标识别的类脑心智计算理论与系统应用

    (3) 河南省技术发明三等奖(排名第五),2021,面向大气遥感的大数据高效处理关键技术及应用

    (4) 中国遥感优秀成果一等奖(排名第五),2023,基于卫星技术的天空地一体化“碳污同源”监测体系

    (5) 国家测绘科技进步一等奖(排名第十五),2013,环境空气卫星遥感技术工程化及应用